skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harrison, Brent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The large demand of mobile devices creates significant concerns about the quality of mobile applications (apps). Developers need to guarantee the quality of mobile apps before it is released to the market. There have been many approaches using different strategies to test the GUI of mobile apps. However, they still need improvement due to their limited effectiveness. In this article, we propose DinoDroid, an approach based on deep Q-networks to automate testing of Android apps. DinoDroid learns a behavior model from a set of existing apps and the learned model can be used to explore and generate tests for new apps. DinoDroid is able to capture the fine-grained details of GUI events (e.g., the content of GUI widgets) and use them as features that are fed into deep neural network, which acts as the agent to guide app exploration. DinoDroid automatically adapts the learned model during the exploration without the need of any modeling strategies or pre-defined rules. We conduct experiments on 64 open-source Android apps. The results showed that DinoDroid outperforms existing Android testing tools in terms of code coverage and bug detection. 
    more » « less
  2. null (Ed.)
    Interactive reinforcement learning (IRL) agents use human feedback or instruction to help them learn in complex environments. Often, this feedback comes in the form of a discrete signal that’s either positive or negative. While informative, this information can be difficult to generalize on its own. In this work, we explore how natural language advice can be used to provide a richer feedback signal to a reinforcement learning agent by extending policy shaping, a well-known IRL technique. Usually policy shaping employs a human feedback policy to help an agent to learn more about how to achieve its goal. In our case, we replace this human feedback policy with policy generated based on natural language advice. We aim to inspect if the generated natural language reasoning provides support to a deep RL agent to decide its actions successfully in any given environment. So, we design our model with three networks: first one is the experience driven, next is the advice generator and third one is the advice driven. While the experience driven RL agent chooses its actions being influenced by the environmental reward, the advice driven neural network with generated feedback by the advice generator for any new state selects its actions to assist the RL agent to better policy shaping. 
    more » « less
  3. Value alignment is a property of an intelligent agent indicating that it can only pursue goals and activities that are beneficial to humans. Traditional approaches to value alignment use imitation learning or preference learning to infer the values of humans by observing their behavior. We introduce a complementary technique in which a value-aligned prior is learned from naturally occurring stories which encode societal norms. Training data is sourced from the children's educational comic strip, Goofus & Gallant. In this work, we train multiple machine learning models to classify natural language descriptions of situations found in the comic strip as normative or non-normative by identifying if they align with the main characters' behavior. We also report the models' performance when transferring to two unrelated tasks with little to no additional training on the new task. 
    more » « less
  4. null (Ed.)